375 / 2019-03-24 06:06:56
Dielectric materials for electro-active (electret) and/or electro-passive (insulation) applications
Dielectric materials,Electrets,Electrical insulation,Electro-active and electro-passive,Nano-dielectrics,Charging or poling,Charge storage and transport
全文录用
Reimund Gerhard / University of Potsdam, Faculty of Science
Dielectric materials for electret applications usually have to contain a quasi-permanent space charge or dipole polarization that is stable over large temperature ranges and time periods. For electrical-insulation applications, on the other hand, a quasi-permanent space charge or dipole polarization is usually considered detrimental. In recent years, however, with the advent of high-voltage direct-current (HVDC) transmission and high-voltage capacitors for energy storage, new possibilities are being explored in the area of high-voltage dielectrics. Stable charge trapping (as e.g. found in nano-dielectrics) or large dipole polarizations (as e.g. found in relaxor ferroelectrics and high- permittivity dielectrics) are no longer considered to be necessarily detrimental in electrical-insulation materials. On the other hand, recent developments in electro-electrets (dielectric elastomers), i.e. very soft dielectrics with large actuation strains and high breakdown fields, and in ferroelectrets, i.e. polymers with electri- cally charged cavities, have resulted in new electret materials that may also be useful for HVDC insulation systems. Furthermore, 2-dimensional (nano-particles on surfaces or interfaces) and 3-dimensional (nano-particles in the bulk) nano-dielectrics have been found to provide very good charge-trapping properties that may not only be used for more stable electrets and ferroelectrets, but also for better HVDC electrical-insulation materials with the possibility to optimize charge-transport and field-gradient behavior. In view of these and other recent developments, a first attempt will be made to review a small selection of electro-active (i.e. electret) and electro-passive (i.e. insulation) dielectrics in direct comparison. Such a comparative approach may lead to synergies in materials concepts and research methods that will benefit both areas. Furthermore, electrets may be very useful for sensing and monitoring applications in electrical-insulation systems, while high-voltage technology is essential for more efficient charging and poling of electret materials.
重要日期
  • 会议日期

    04月07日

    2019

    04月10日

    2019

  • 04月10日 2019

    注册截止日期

  • 05月12日 2019

    初稿截稿日期

主办单位
IEEE电介质和电气绝缘协会
中国电工学会工程电介质专业委员会
承办单位
华南理工大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询