83 / 2024-04-11 11:13:02
Machine Learning-Based Predictive Model for Steady-State Temperature at Critical Points of a 126 kV Vacuum Circuit Breaker
Vacuum circuit breaker, machine learning, temperature estimation
终稿
Lei Huang / Xi'An Jiaotong University
Zhang Yuanbing / State Key Laboratory of Electrical Insulation and Power Equipment; Xi’an Jiaotong University
Tianchi Tang / Xi'an Jiaotong University
Yuanzhao Li / Xi’an Jiaotong University
Hui Ma / Xi'An Jiaotong University
Yingsan Geng / Xi'an Jiaotong University
Jianhua Wang / Xi'an Jiaotong University
zhiyuan liu / Xi’an Jiaotong University;State Key Laboratory of Electric Power Equipment
The structural complexities of vacuum circuit breakers (VCBs) impede the temperature measurement at critical points. This study develops a novel predictive model for a 126 kV VCB, leveraging load current, ambient temperature, and contact resistance at key positions to estimate temperatures at these critical points. The research has two primary objectives: first, to estimate temperatures at measurement points during temperature rise tests to assess compliance with standard limits; and second, to calculate the hot spot temperature within the vacuum interrupter. This paper presents an electromagnetic-thermal-fluid coupled simulation model of a single-phase 126 kV VCB to investigate the temperature distribution under steady-state load conditions. Utilizing the data collected from the simulation, a predictive model was developed using machine learning to estimate temperatures at critical points within the VCB. This research uses external parameters to calculate the internal temperatures of the VCB, thus evaluating whether the temperature rise meets design and operational standards.
重要日期
  • 会议日期

    11月10日

    2024

    11月13日

    2024

  • 11月11日 2024

    初稿截稿日期

  • 11月19日 2024

    注册截止日期

主办单位
Xi’an Jiaotong Universit
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询