Self-Tuning Genetic Algorithm for Feature Selection in Multivariate Hydraulic System Condition Monitoring
编号:121 访问权限:仅限参会人 更新:2021-08-23 10:14:06 浏览:210次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
An intelligent modelling responsive to statistical changes yet refrain from noise is required to describe continuously evolving operating process. In this paper, the importance of applying a customized self-tuning algorithm to regulates the parameter setting in machine learning (ML) simulation, particularly genetic algorithm is demonstrated. The investigation is conducted with the multiple-input-multiple-output hydraulic system dataset feature selection benchmarking and several notable findings are obtained over the course of study. First, overfitting issue encountered by ML black box modelling can be reduce with feature selection optimisation. Next, a fine-tuned genetic algorithm as a function of fitness function increases prediction accuracy and reduce cross-validation losses compared to out-of-the-box deep learning. Finally, the trade-off between computation cost and ML interference power are non-trivial.
 
关键词
Feature selection,Genetic Algorithm (GA),condition monitoring,self-tuning
报告人
Meng Hee Lim
Assoc. Prof. Universiti Teknologi Malaysia;Institute of Noise and Vibration

稿件作者
Sheng Ooi Institute of Noise and Vibration; Universiti Teknologi Malaysia
Meng Hee Lim Universiti Teknologi Malaysia;Institute of Noise and Vibration
Kee Quen Lee Intelligent Dynamic and System I-kohza, Malaysian-Japan International of Technology, Universiti Teknologi Malaysia
Mohd Salman Leong Universiti Teknologi Malaysia;Institute of Noise and Vibration
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月01日

    2022

    11月03日

    2022

  • 10月30日 2022

    初稿截稿日期

  • 11月09日 2022

    注册截止日期

主办单位
Qingdao University of Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询