176 / 2019-06-26 09:48:04
Dynamic Gesture Recognition Based on the Multi-modality Fusion Temporal Segment Networks
Dynamic gesture recognition,,Multi-modality fusion, Temporal segment networks,Optical flow
全文待审
Mingyao Zheng / Zhengzhou University
Yun Tie / Zhengzhou University
Li Qi / Zhengzhou University
Shengnan Jiang / Zhengzhou University
Gesture recognition is applied in various intellig- ent scenes. In this paper, we propose the multi-modality fusion temporal segment networks (MMFTSN) model to solve dynamic gestures recognition. Three gesture modalities: RGB, Depth and optical flow (OF) video data are equally segmented and randomly sampled. Then, the sampling frames are classified using convolutional neural network. Finally, fusing three kinds of modality classification results. MMFTSN is used to obtain the recognition accuracy of 60.2% on the gesture database Chalearn LAP IsoGD, which is better than the result of related algorithms. The results show that the improved performance of our MMFTSN model.
重要日期
  • 会议日期

    10月09日

    2019

    10月10日

    2019

  • 07月20日 2019

    初稿截稿日期

  • 10月10日 2019

    注册截止日期

主办单位
Xi’an Jiaotong University
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询