Image-Based DEM Investigation of the Mechanical Behavior of Chang'e-5 Lunar Regolith Incorporating Particle Morphology and Interparticle Adhesion
编号:7 访问权限:仅限参会人 更新:2025-12-30 19:10:43 浏览:17次 口头报告

报告开始:暂无开始时间(Asia/Hong_Kong)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Understanding the mechanical behavior of lunar regolith is fundamental for upcoming lunar exploration and infrastructure development. However, the scarcity of returned samples and the limitations of conventional simulants necessitate high-fidelity numerical modeling. This study establishes a novel Discrete Element Method (DEM) framework to investigate the mechanical behavior of Chang'e-5 lunar regolith by simultaneously incorporating realistic particle morphology, the actual particle size distribution, and distance-dependent interparticle adhesion. High-fidelity particle shapes, including spherical, columnar, flat, and bladed forms, are reconstructed from micro-CT images of over 5000 particles (Wu et al., 2025), and represented using bonded sphere clusters, while faithfully replicating the measured size distribution. A new surface-based adhesive contact model is developed to simulate van der Waals forces between irregular particles. Numerical triaxial tests were conducted to analyze macroscopic strength from peak to critical state (Figure 1). The simulated dense specimen (porosity=38%) exhibited peak strength parameters (friction angle φ=43.5°, cohesion c=3.77 kPa) and critical state parameters (φ=37.3°, c=2.44 kPa). The loose specimen (porosity=46%) showed lower peak strength (φ=40.2°, c=2.21 kPa) and a critical state of φ=38.2° and c=2.14 kPa. Our results indicate that the presence of adhesive forces significantly enhances cohesion but has a negligible effect on the friction angle. Microscopic analysis reveals that adhesion stabilizes the contact network and suppresses particle rotation, which are key strengthening mechanisms. The findings highlight the critical interplay between particle morphology and interparticle adhesion, providing essential insights for lunar surface engineering.
关键词
lunar regolith,micro-CT imaging,discrete element method,particle morphology,interparticle adhesion
报告人
Huanyu Wu
PhD candidate The Hong Kong Polytechnic University

稿件作者
Huanyu Wu The Hong Kong Polytechnic University
Qi Zhao The Hong Kong Polytechnic University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    02月05日

    2026

    02月09日

    2026

  • 01月01日 2026

    初稿截稿日期

  • 02月09日 2026

    注册截止日期

主办单位
香港理工大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询