2 / 2026-01-09 15:15:11
CellBin: a generalist framework to process spatial omics data to cell level
spatial transcriptomics,cell segmentation,Deep Learning
摘要待审
邵浩靖 / 中国农业科学院深圳农业基因组研究所

Spatial omics has rapidly expanded with increasingly diverse imaging modalities, molecular targets, and chip sizes. However, no general framework currently exists to construct cell level matrices that are robust across platforms and omics types. Here we present CellBin, a universal and scalable frame- work that unifies image stitching, cell segmentation, and spot-to-cell mapping for multiple spatial omics technologies. CellBin integrates a multi-field weighted stitching algorithm for large-area images, a fam- ily of U-Net–based models trained across diverse staining modalities, and an optimized computational architecture for high-throughput processing. Across five technological platforms and three omics data types, CellBin achieves robust segmentation and accurate single-cell matrix construction, consistently outperforming seven state-of-the-art methods in F1-score, cell size precision, and annotation accuracy. By providing a generalizable, cross-platform solution, CellBin bridges multiple spatial omics, enabling unified, high-resolution cell level analyses across technologies.

重要日期
  • 会议日期

    03月27日

    2026

    03月29日

    2026

主办单位
中国生物信息学会基因组信息学专业委员会
承办单位
西湖大学
联系方式
  • 谭向宇
  • 159*********
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询