Non-intrusive reduced-order modeling of space-time-dependent parameterized problems
编号:218 访问权限:仅限参会人 更新:2025-09-30 11:14:18 浏览:4次 张贴报告

报告开始:2025年10月11日 13:38(Asia/Shanghai)

报告时间:1min

所在会场:[PO] Poster Presentation [PO2] Poster Presentation 2

暂无文件

摘要
We propose a non-intrusive reduced-order modeling method based on Proper Orthogonal Decomposition (POD) and adaptive Multi-Element generalized Polynomial Chaos (ME-gPC) for efficient uncertainty quantification in parameterized problems. In the offline stage, a single or two-level POD extracts the spatial and/or temporal modes from selected full-order snapshots. The parameter-dependent coefficients are then approximated using ME-gPC, in which adaptive partitioning of the parameter space enables accurate local polynomial approximations, especially in low-regularity regions. The proposed approach is validated on three representative problems: a one-dimensional Burgers’ equation with a random force term, a flexible filament in a uniform flow, and the Kraichnan-Orszag three-mode problem. The results indicate that ME-gPC outperforms gPC in handling low-regularity issues, and the proposed method approximates the full-order model with high efficiency and accuracy. This demonstrates its strong potential for uncertainty quantification of space-time-dependent problems, particularly those with localized features, strong nonlinearity, or complex parameter interactions.
 
关键词
Reduced order modelling,Proper orthogonal decomposition (POD),Multi-Element generalized Polynomial Chaos,Space-time-dependent parameterized problems
报告人
Xiaomin Wang
Yonsei University, South Korea

稿件作者
Xiaomin Wang Yonsei University
Tiantian Xu Yonsei University *
Jung-Il Choi Yonsei University *
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月09日

    2025

    10月13日

    2025

  • 08月30日 2025

    初稿截稿日期

  • 10月13日 2025

    注册截止日期

主办单位
Huazhong University of Science and Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询