Urban Microclimate Simulation for UAM Operation Safety Assessment Using LES Data–Driven POD–Transformer Modeling
编号:211 访问权限:仅限参会人 更新:2025-09-30 10:28:01 浏览:7次 口头报告

报告开始:2025年10月12日 08:50(Asia/Shanghai)

报告时间:15min

所在会场:[S8] AI, surrogate modeling and optimization [S8-1] Session 8-1

暂无文件

摘要
Integrating Urban Air Mobility (UAM) into urban transportation systems requires operational planning that addresses safety and efficiency. In urban areas, local wind speed and turbulence intensity are strongly influenced by terrain features such as building geometry, elevation, rivers, and green spaces, directly affecting vertiport placement and flight path planning. In this study, we employ the massively parallel multi-GPU CFD solver (MPM-STD) to generate high-resolution urban wind datasets under diverse meteorological conditions and train a deep learning surrogate model (POD-Transformer) on these datasets. The trained surrogate model is applied to the Yeouido district of Seoul, combining simulation with meteorological observations to analyze multiple wind-related indicators for UAM operational safety. This study presents model validation results and example applications, and discusses the potential for incorporating local terrain and meteorological effects into future UAM operational planning.
 
关键词
Proper Orthogonal Decomposition,Transformer Network,Large Eddy Simulation,Urban Microclimate,UAM Operation Safety Assessment
报告人
Kim Jungwoo
Yonsei University, South Korea

稿件作者
Kim Jungwoo Yonsei Univ
Mingyu Yang Yonsei University *
Jung-Il Choi Yonsei University *
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月09日

    2025

    10月13日

    2025

  • 08月30日 2025

    初稿截稿日期

  • 10月13日 2025

    注册截止日期

主办单位
Huazhong University of Science and Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询