Prediction of patient-specific hemodynamics for cerebral aneurysms using computational fluid dynamics and deep learning techniques
编号:201 访问权限:仅限参会人 更新:2025-10-01 23:11:02 浏览:6次 特邀报告

报告开始:2025年10月12日 15:30(Asia/Shanghai)

报告时间:20min

所在会场:[S8] AI, surrogate modeling and optimization [S8-2] Session 8-2

暂无文件

摘要
Rupture of cerebral aneurysm is one of the major causes of subarachnoid hemorrhage, and quantifying patient-specific hemodynamics is a clinically important challenge. Because vascular geometry and blood flow conditions vary individually, computational fluid dynamics (CFD) based on medical images is a powerful tool for such quantification, but its high computational cost poses a problem in clinical applications. In this talk, I will introduce three practical strategies for hemodynamic quantification methods based on CFD-based data assimilation and physics-based neural network with a fine-tuning strategy.
关键词
暂无
报告人
Satoshi Ii
Institute of Science Tokyo, Japan

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月09日

    2025

    10月13日

    2025

  • 08月30日 2025

    初稿截稿日期

  • 10月13日 2025

    注册截止日期

主办单位
Huazhong University of Science and Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询