Physics Informed Neural Networks for Nanofluid Flow and Heat Transfer with Dynamic Inverse Parameters
编号:180 访问权限:仅限参会人 更新:2025-09-30 09:41:24 浏览:6次 主旨报告

报告开始:2025年10月11日 08:00(Asia/Shanghai)

报告时间:30min

所在会场:[S2] Numerical micro/nanofluid dynamics and heat transfer [S2-1] Session 2-1

暂无文件

摘要
A physics informed neural network (PINN) framework for efficient prediction of nanofluid flow and heat transfer is built including a new inverse dynamic prediction scheme of governing parameter sets. Two PINN models based on physics-guided loss functions formulated by governing equation residuals, the Navier-Stokes equations informed neural network (NS-NN) and the Reynolds averaged Navier-Stokes equations informed neural network (RANS-NN), are presented. A standard four-module computational code is developed in C++ for comparative studies. Code validations for theoretical vortex flow fields show that the prediction errors are less than 1%, 1%, and 5% for outputs, first and second gradients, respectively. Inverse parameter sets are obtained automatically and dynamically with a root means square control mechanics for various physics governing parameters simultaneously.  Both transient flow and temperature fields for natural convective nanolfuid flow in a magnetic field are predicted with high accuracy. Moreover, enhancement of the instability is observed with the help of the PINN compared to some special cases of ground truth data.  Results show that the PINN with inverse dynamical parameters can achieve faster convergence speed and higher accuracy compared to conventional NNs.
关键词
暂无
报告人
Yan Su
University of Macau, China

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月09日

    2025

    10月13日

    2025

  • 08月30日 2025

    初稿截稿日期

  • 10月13日 2025

    注册截止日期

主办单位
Huazhong University of Science and Technology
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询