Development of Non-contact Vision Sensing Methods for Bridge Deformation Measurement Under Construction
编号:125 访问权限:仅限参会人 更新:2025-08-08 17:48:20 浏览:20次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
During the construction phase, it is crucial to measure the pier settlement displacement and deformation of large-span prestressed concrete bridges to ensure the construction safety. Traditional contact measurement techniques, however, are time-consuming and labor-intensive, while noncontact vision sensing method has poor precision and robustness in complex construction environments, such as the object occlusion and varying light conditions. To address these issues, this study proposes a noncontact vision-based deformation measurement method for large-span rigid concrete bridges. Specifically, (1) a deep learning network was first employed to eliminate the adverse effect of complex backgrounds and varying ambient light in captured images on target detection results and an adaptive displacement extraction algorithm without a human-computer interaction process was developed to automatically extract target coordinates and pier settlement displacement by a dual camera system; (2) an enhanced vision-based deformation measurement methodology for large-span prestressed concrete rigid-frame bridges under construction scenarios involving personnel movement and mechanical operations that induce partial or complete target occlusion. The robustness and efficacy of the proposed method have been thoroughly verified through field tests on a prestressed concrete rigid-frame bridge during the symmetrical cantilever casting process. The results demonstrate that our proposed method greatly minimizes deformation anomalies due to object occlusion and efficiently captures deformation from targets of various shapes, such as circular and chessboard patterns. This method demonstrates significant potential for accurately measuring multipoint deformations of large-scale bridges in complex construction environments, thereby providing essential data for bridge safety assessment and construction strategy decision-making.
关键词
Bridge engineering;displacement measurement;computer vision;deep learning;intelligent construction
报告人
占玉林
教授 西南交通大学

占玉林,男,博士,土木工程学院桥梁工程系教授,博士生导师,M.ASCE,“天府学者”特聘专家,四川省青年科技创新研究团队带头人,四川省学术与技术带头人。西南交通大学“雏鹰学者”、“教书育人”优秀奖和“唐立新”优秀教学教师奖获得者。现任西南交通大学重大工程办公室主任兼川藏铁路研究院院长、土木工程材料研究所常务副所长、四川省交通土建材料工程技术研究中心主任、城市智能建造四川省虚拟仿真实验教学中心主任。中国钢结构协会钢-混凝土组合结构分会理事、中国铁建BIM工程实验室专家委员会委员、四川省科技青年联合会理事、北京茅以升科技教育基金会桥梁委员会委员、成都市侨联青年委员会副会长、美国ASCE学会大中华区理事、四川省侨联特聘专家委员会专家、成渝地区双城经济圈科技创新联盟评估咨询专家。主要研究兴趣为混凝土及钢-混凝土组合结构桥梁、高性能复合材料、山区桥梁震灾防治等方面。担任《交通运输工程学报》、《铁道科学与工程学报》等期刊青年编委,Journal of Bridge Engineering(ASCE)、Engineering Structures、Structures、中国公路学报、西南交通大学学报、长安大学学报、建筑结构、长沙理工大学学报等期刊的审稿人,注册安全评价师和桥梁检测师。主持和主研包括国家自然科学基金、国家重点研发项目、973和863等在内的项目60余项,发表学术论文100余篇,获专利10余项,专著2部,软件著作权5项。曾获中国公路学会科技奖、安徽省科学技术奖、中国交通运输协会、住房和城乡建设部华夏建设科学技术奖、四川省教学改革成果奖等奖项。

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月15日

    2025

    08月17日

    2025

  • 08月08日 2025

    初稿截稿日期

  • 08月16日 2025

    报告提交截止日期

  • 08月17日 2025

    注册截止日期

主办单位
兰州交通大学
同济大学
承办单位
兰州交通大学土木工程学院
中国建筑第六工程局有限公司
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询