Early Prediction of Diabetes Using a Stacking Ensemble of Tree-Based Classifiers
编号:99 访问权限:仅限参会人 更新:2025-12-23 13:10:49 浏览:107次 拓展类型2

报告开始:2025年12月30日 13:45(Asia/Amman)

报告时间:15min

所在会场:[S5] Track 5: Emerging Trends of AI/ML [S5-2] Track 5: Emerging Trends of AI/ML

暂无文件

摘要
Early prediction of diabetes can significantly improve patient outcomes by enabling timely interventions. In this study, we propose a stacking ensemble model composed of four tree-based classifiers – Random Forest, XGBoost, LightGBM, and CatBoost – with a logistic regression meta-learner for the early prediction of diabetes. The model is trained and evaluated on the PIMA Indians Diabetes Dataset, using data preprocessing steps to handle missing values (zeros replaced with median imputation) and feature standardization. We perform an 80/20 stratified train-test split and tune the decision threshold. The stacking ensemble achieves superior performance compared to individual classifiers and prior ensemble approaches in literature. Key performance metrics include an accuracy and ROC-AUC of about 0.85 on the test set. These results improve upon the baseline non-ensemble methods (around 77% accuracy)​ and are competitive with state-of-the-art ensemble models such as AdaBoost and XGBoost. The proposed model and findings suggest that stacking heterogeneous tree-based learners is a promising approach for early diabetes detection.
 
关键词
Diabetes Mellitus, Stacking Ensemble, Random Forest, XGBoost, LightGBM, CatBoost, Early Prediction, Machine Learning, Classification, ROC-AUC
报告人
Waleed Alomoush
Associate Professor Plekhanov Russian University of Economics in Dubai.; Dubai Knowledge Park; Dubai; UAE

稿件作者
Waleed Alomoush Plekhanov Russian University of Economics in Dubai.; Dubai Knowledge Park; Dubai; UAE
Ayat Alrosan Dubai; UAE;Artificial Intelligence Center for Humanities and social science research; Alwasl University
Saeed Alsuwaidi Skyline University College
Fuad Alhosban Computer Science Department, College of Computing and Intelligent Systems, University of Al Dhaid, Sharjah, UAE
Mohanad A. Deif University of Sharjah
Zakaria Che muda INTI-IU University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询