Towards Deep Q-Learning for Target k-Coverage Protocol In UAV Networks
编号:96 访问权限:仅限参会人 更新:2025-12-23 12:00:41 浏览:113次 拓展类型1

报告开始:2025年12月29日 14:00(Asia/Amman)

报告时间:15min

所在会场:[S1] Track 1: Mobile computing, communications, 5G and beyond [S1-1] Track 1: Mobile computing, communications, 5G and beyond

暂无文件

摘要
Unmanned Aerial Vehicles (UAVs or
drones) play a crucial role in surveillance missions,
especially where ground infrastructure is damaged or
inaccessible. Ensuring reliable and simultaneous coverage
of critical zones by UAVs, known as k-coverage,
remains a significant challenge. Traditional methods
require UAVs to cover an entire area which leads to high
energy consumption, this is problematic, especially in
environments where battery recharge or replacement
is difficult. To overcome these challenges, Only a set
of targets should be monitored instead of monitoring
the entire area. This paper proposes DQTCP (Deep
Q-learning-based Target Coverage Protocol), a new
deep reinforcement learning approach to continually
cover a maximum number of stationary targets. In
DQTCP, the UAV acts as an autonomous Deep QNetwork
(DQN) agent, with discrete actions and individualized
learning parameters balancing exploration
and exploitation. Through iterative training and environment
interaction, UAV adopts policies that optimize
the target coverage effectiveness. Simulations
show that DQTCP using based on the Reinforcement
learning theory, is very efficient in terms of coverage
performance and stability.
 
关键词
Target k-Coverage, UAVs, Reinforcement Learning, DQN.
报告人
Ala' Khalifeh
Professor Jordan;German Jordanian University; Amman

稿件作者
Manel Chenait University of Sciences and Technology Houari Boumediene (USTHB)
Mohammed Guermat University of Sciences and Technology Houari Boumediene (USTHB)
Meriem Mizat University of Sciences and Technology Houari Boumediene (USTHB)
Ala' Khalifeh Jordan;German Jordanian University; Amman
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询