Vision Transformer vs. ResNet-101: An Explainable Deep Learning Approach for Breast Cancer Detection in Ultrasound Images
编号:82 访问权限:仅限参会人 更新:2025-12-21 13:01:15 浏览:25次 拓展类型2

报告开始:暂无开始时间(Asia/Amman)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Breast cancer remains a significant global health concern, where early and accurate diagnosis is paramount for improving patient survival rates. This paper presents a comparative analysis of two deep learning architectures, the Convolutional Neural Network (CNN) based ResNet-101 and the Vision Transformer (ViT), for the classification of breast ultrasound images into benign, malignant, and normal categories. Addressing the common challenge of limited data, we employed a data augmentation strategy to expand a benchmark dataset of 780 images to over 10,000 images, creating a robust training set. Both models were trained on this augmented dataset, achieving test accuracies of 98.64% for the Transformer model and 97.57% for Resnet-101 model. The result indicates that the ViT model achieved higher accuracy than the ResNet-101. Furthermore, the existing Deep learning models are black box models. To enhance model transparency and build clinical trust, Gradient-weighted Class Activation Mapping (Grad-CAM), an Explainable AI (XAI) technique, is utilized to generate visual heatmaps, highlighting the specific regions in the ultrasound images that were most influential in the models’ diagnostic decisions. The proposed model harnesses GPU-based parallel infrastructure.
关键词
Breast Cancer, Deep Learning, ResNet-101, Vision Transformer, Explainable AI, Grad-CAM
报告人
Lipismita Panigrahi
Assistant Professor SRM University-Amaravati

稿件作者
Manogna Kanukurthi SRM UNIVERSITY, Amaravati
Mahitha Vedampudi SRM UNIVERSITY, Amaravati
Sathwika Nibbaragandla SRM UNIVERSITY, Amaravati
Jahnavi Kamana SRM UNIVERSITY, Amaravati
Lipismita Panigrahi SRM University-Amaravati
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

  • 12月31日 2025

    初稿截稿日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询