Deep Learning Models for ECG and EEG Signal Classification in Cardiovascular and Neurological Disorders: A Comprehensive Survey
编号:79 访问权限:仅限参会人 更新:2025-12-21 13:00:50 浏览:21次 拓展类型2

报告开始:暂无开始时间(Asia/Amman)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Deep learning (DL) has emerged as a transformative paradigm in biomedical signal analysis, offering unprecedented capabilities for automatic feature extraction, efficient classification, and complex pattern recognition. The integration of DL techniques has significantly enhanced the interpretation of physiological signals such as Electrocardiograms (ECG) and Electroencephalograms (EEG), leading to more accurate and timely diagnosis of cardiovascular and neurological disorders. Unlike traditional machine learning methods that depend on handcrafted features, DL models autonomously learn hierarchical representations from raw signal data, improving generalization across diverse patient populations. This paper presents a comprehensive survey of state-of-the-art deep learning architectures, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), Autoencoders, and Transformer-based models, applied to ECG and EEG signal classification. Additionally, it discusses preprocessing techniques, benchmark datasets, evaluation metrics, and hybrid model developments.
 
关键词
Deep Learning, ECG, EEG, CNN, LSTM, Transformer, Biomedical Signal Processing, Cardiovascular Disorders, Neurological Disorders.
报告人
V. Ramesh
Assistant Professor CMR institute of Technology,medchal, Hyderabad.

稿件作者
V. Ramesh CMR institute of Technology,medchal, Hyderabad.
DHARAVATH CHAMPLA St. Peter's Engineering College, Hyderabad,Telangana.
A Senthil Murugan St. Peter's Engineering College, Hyderabad.
Anil Kumar Reddy Pallaka St. peters Engineering College, Hyderabad.
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

  • 12月31日 2025

    初稿截稿日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询