Deep Learning Models for ECG and EEG Signal Classification in Cardiovascular and Neurological Disorders: A Comprehensive Survey
编号:79 访问权限:仅限参会人 更新:2025-12-21 13:00:50 浏览:210次 拓展类型2

报告开始:2025年12月30日 15:00(Asia/Amman)

报告时间:15min

所在会场:[S5] Track 5: Emerging Trends of AI/ML [S5-2] Track 5: Emerging Trends of AI/ML

演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Deep learning (DL) has emerged as a transformative paradigm in biomedical signal analysis, offering unprecedented capabilities for automatic feature extraction, efficient classification, and complex pattern recognition. The integration of DL techniques has significantly enhanced the interpretation of physiological signals such as Electrocardiograms (ECG) and Electroencephalograms (EEG), leading to more accurate and timely diagnosis of cardiovascular and neurological disorders. Unlike traditional machine learning methods that depend on handcrafted features, DL models autonomously learn hierarchical representations from raw signal data, improving generalization across diverse patient populations. This paper presents a comprehensive survey of state-of-the-art deep learning architectures, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), Autoencoders, and Transformer-based models, applied to ECG and EEG signal classification. Additionally, it discusses preprocessing techniques, benchmark datasets, evaluation metrics, and hybrid model developments.
 
关键词
Deep Learning, ECG, EEG, CNN, LSTM, Transformer, Biomedical Signal Processing, Cardiovascular Disorders, Neurological Disorders.
报告人
V. Ramesh
Assistant Professor CMR institute of Technology,medchal, Hyderabad.

稿件作者
V. Ramesh CMR institute of Technology,medchal, Hyderabad.
DHARAVATH CHAMPLA St. Peter's Engineering College, Hyderabad,Telangana.
Parvatham Niranjan Kumar CVR College of Engineering, Hyderabad
Anil Kumar Reddy Pallaka St. peters Engineering College, Hyderabad.
Balusupati Anilkumar CMR INSTITUTE OF TECHNOLOGY, HYDERABAD
A. Senthil Murugan St. Peter's Engineering College, Hyderabad.
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询