Drone Flight Log Forensics with BERT-based Entity Recognition
编号:74 访问权限:仅限参会人 更新:2025-12-21 12:59:11 浏览:137次 拓展类型2

报告开始:2025年12月29日 17:15(Asia/Amman)

报告时间:15min

所在会场:[S3] Track 3: Privacy, Security for Networks [S3] Track 3: Privacy, Security for Networks

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Drones continuously generate flight log data containing valuable information about flight states, sensor readings, and system events. These logs are critical forensic artifacts for investigating incidents such as crashes or operational anomalies. However, previous forensic studies seldom explore the semantic context embedded within the human-readable flight log messages. This paper presents a Transformer-based named entity recognition (NER) framework to automatically extract meaningful entities such as events and issues from drone flight logs. To enhance generalization and simplify downstream analysis, the six original entity types defined in the DroNER dataset were merged into two higher-level classes Event and NonEvent to represent operational and anomalous contexts, respectively. We fine-tuned three pre-trained language models: BERT, DistilBERT, and SqueezeBERT, on this adapted dataset curated for drone forensic analysis. Experimental results show that SqueezeBERT, with only 51M parameters, achieves an F1 score of 96.79%, comparable to BERT’s 98.00%. This study is the first to benchmark. These findings suggest that lightweight Transformer architectures are highly promising for edge-level forensic NLP applications, enabling real-time log-based investigation automation on resource limited forensic platforms.
关键词
Lightweight Transformer, Edge Forensic NLP, BERT, SqueezeBERT, DistilBERT, Drone Flight Log, Named Entity Recognition, Log-Based Investigation Automation, Digital Forensic Investigation
报告人
Bimo Syahputro
Student Institut Teknologi Sepuluh Nopember Surabaya

稿件作者
Bimo Syahputro Institut Teknologi Sepuluh Nopember Surabaya
Hudan Studiawan ITS
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询