Centralized stacking ensemble and Federated Learning Models for Heart Disease Prediction with SHAP
编号:63 访问权限:仅限参会人 更新:2025-12-21 12:27:21 浏览:115次 拓展类型2

报告开始:2025年12月30日 14:45(Asia/Amman)

报告时间:15min

所在会场:[S7] Track 7: Pattern Recognition, Computer Vision and Image Processing [S7-2] Track 7: Pattern Recognition, Computer Vision and Image Processing

演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The need for precise and simple diagnostic techniques is highlighted by the fact that cardiovascular diseases (CVDs) remain one of the major risks to world health. This study proposes a hybrid deep learning-based architecture for heart disease prediction using the publically accessible Heart Disease dataset, which includes 920 patient records and 13 significant clinical characteristics. The suggested model, known as Power Boost Ensemble, uses a stacking technique to merge four distinct base learners: Random Forest, Extra Trees, Gradient Boosting, and Logistic Regression. A Ridge Classifier serves as the meta learner in this configuration, gathering predictions from each base learner. With a test accuracy of 85% using 10-fold cross validation, the stacked ensemble exhibits good generalization and consistent performance across all significant assessment criteria. Shapley Additive Explanations (SHAP) are used to understand how the meta model develops its predictions in order to improve interpretability and clarity. The SHAP results show that the model’s conclusions are significantly influenced by important clinical parameters including ca (number of main vessels), cp (kind of chest pain), thal (thalassemia), and oldpeak (ST depression). All things considered, the Power Boost Ensemble offers a dependable, comprehensible, and reproducible approach to cardiac sickness prediction, making it appropriate for upcoming clinical applications based on artificial intelligence.
关键词
Deep Learning,Explainable AI,Multi- Layer Perceptron,Heart Disease,Federated Learning Models
报告人
Lipismita Panigrahi
Assistant Professor SRM University-AP

稿件作者
S Rama Shesha Sai SRM UNIVERSITY, Amaravati
Rohan Tunikipati SRM UNIVERSITY, Amaravati
David Raju Boddupalli SRM UNIVERSITY, Amaravati
Srinivas Jilla SRM UNIVERSITY, Amaravati
Lipismita Panigrahi SRM University-AP
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询