An Attention-based Fusion Multimodal Predictive Model for Heart Rate Deviation: A Simulative Design Study
编号:62 访问权限:仅限参会人 更新:2025-12-21 12:27:00 浏览:115次 拓展类型2

报告开始:2025年12月30日 16:30(Asia/Amman)

报告时间:15min

所在会场:[S5] Track 5: Emerging Trends of AI/ML [S5-2] Track 5: Emerging Trends of AI/ML

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Intelligent health analysis models improve the health sector, particularly in monitoring heart rate. Traditional unimodal systems struggle to satisfactorily provide a comprehensive and accurate prediction of heart rate deviation (HRD) as they learn from limited data features. This research study argues that an attention-based multimodal fusion model trained on authorized medical datasets remains the best possible solution, as it can manage HRD complexity. The study employs a simulation experiment methodology to compare the response accuracy of the unimodal to the attention-based multimodal model. A matrix comparison of six dataset features was selected to test a prediction of accurate and comprehensive HRD. The simulative experimental findings demonstrate that a gated attention-fused predictive multimodal system outperforms traditional unimodal systems, as heart rate deviation involves complex complementary signals. 
 
关键词
intelligent systems,,multimodal predictive models,gated attention fusion,heart rate deviation
报告人
Tefo Kgosietsile
PhD Student University of Botswana

稿件作者
Tefo Kgosietsile University of Botswana
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询