EmberNet: An Augmented Depthwise Separable Convolution Network for Microcontrollers
编号:59 访问权限:仅限参会人 更新:2025-12-18 10:16:22 浏览:136次 拓展类型2

报告开始:2025年12月29日 17:30(Asia/Amman)

报告时间:15min

所在会场:[S3] Track 3: Privacy, Security for Networks [S3] Track 3: Privacy, Security for Networks

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要

Abstract—State-Of-The-Art Neural Networks are accurate but are hungry for compute and memory. For MCU (Microcontrollers), it usually has much less resources: 32KB RAM, 256KB Flash, no GPU. In turn, it requires Neural Network model must meet stringent requirements for energy efficiency, low latency, and robust inferencing. To address this challenge in the paper, I propose EmberNet, a micro-friendly Neural Network based on an Augmented Depthwise Separable Convolution Network[5] for compute-efficiency and much smaller parameters. I illustrate the application of the model with the public dataset[8] using denial-of-service(DoS), Fuzzy, Gear-spoofing, and spoofing-RPM attack types. With EmberNet’s tiny 514-parameter and model size 6.4KB, I am able to achieve 99.46% accuracy and 0.0085 false-negative rate across four attack types. In comparison, EmbernetNet is 1100+ times smaller than a 7MB Inception-ResNet baseline[1], 45 times smaller than specialized RGB-CNN[2]. To make these benchmark results production-viable and reproducible, a build pipeline using TVM (Tensor Virtual Machines), Zephyr Project, and QEMU (Quick EMUlator) has been established to enforce the reliability of the model.

关键词
CAN bus,Depthwise Separable Convolution Network,GroupNorm,Global Adaptive Average Pool,Structural pruning,Intrusion Detection System,edge ai
报告人
Claire Guo
High School Student Lynbrook High School

稿件作者
Claire Guo Lynbrook High School
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询