Model of Spatial Localization and Identification Objects in the Working Area Collaborative Robot.
编号:53 访问权限:仅限参会人 更新:2025-11-19 09:26:05 浏览:6次 拓展类型1

报告开始:暂无开始时间(Asia/Amman)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
This study examines a deep learning model for spatial localization and identification of objects within the collaborative robot workspace through the integration of computer vision, such as in public health and crowed workplaces. A method utilizing the YOLOv8 paradigm is proposed, incorporating depth assessment for each identified object. The approach facilitates the representation of the spatial co-ordinates of objects in the format (X, Y, Z). The simulation outcomes illustrate the efficacy of neuronal identification and dynamic localization under various experimental environmental situations, and show the following results: average depth reconstruction error (MSE = 0.018–0.026 m²) and average frame processing time (≈ 18–22 ms), confirming real-time operation. The generated graphs evaluate the algorithm's stability and its suitability for implementation in adaptive control systems by showing the variation in object quantity over time and their spatial distribution. The proposed implementation utilizes Python within the PyCharm environment, ensuring the flexibility and scalability of the analyzed systems.
关键词
computer vision, collaborative robot, deep learning, Industry 5.0., object identification, spatial localization, YOLOv8
报告人
Hattar Hattar
Associate Professor Zarqa University

稿件作者
Hattar Hattar Zarqa University
Amer Abu-Jassar Department of Computer Science; College of Information Technology Amman Arab University Amman
Mohamed Hafez INTI-IU-University;Shinawatra University
Yaser Al-Sharo Ajluon National University
Vladyslav Yevsieiev Automation and Robotics Kharkiv National University of Radio Electronics
Vyacheslav Lyashenko Kharkiv National University of Radio Electronics
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 11月30日 2025

    初稿截稿日期

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询