GeoValue Analyzer Using MachineLearning
编号:52 访问权限:仅限参会人 更新:2025-11-19 09:25:48 浏览:7次 张贴报告

报告开始:暂无开始时间(Asia/Amman)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Abstract-This research sits at the nexus of machine learning,
geospatial analytics, and real estate informatics, aiming to create
smart, data-driven solutions for property price forecasting. With the
growing datafication of the real estate sector, there is a need for
reliable, explainable, and scalable tools for valuation that evolve
with city dynamics. Current solutions are limited by their
assumption on static datasets, manual estimation, or simple
predictive models that fail to capture geolocation-specific features,
seasonality of markets, or visual property features.To address such
limitations, the present paper introduces the Geo Value Analyzer, a
real-time property valuator based on an extremely accurate
machine learning algorithm. The model accepts structured inputs
like location, area, number of rooms, temporal trends in pricing, and
image information, augmented with sophisticated feature
engineering concepts that combine spatial features, locality scores,
and security indices through external APIs. The system has native
support for SHAP-based explainability, which enables the system to
provide clear justification for every predicted value by highlighting
the contribution of features. Implemented on an interactive web
platform, the system further includes key functionalities like fraud
detection, rent-versus-buy analysis, and a chatbot assistant, giving
users a complete, smart tool for making informed decisions on real
estate.
Keywords-Real estate valuation, machine learning, property price
prediction, explainable AI, SHAP, LIME, geospatial analysis,
temporal data modeling, XGBoost, random forest, linear regression,
housing market trends, automated valuation models (AVM),
interpretable machine learning.
关键词
GeoValue Analyzer Real estate valuation Property price prediction Machine learning Geospatial analysis Predictive modeling Housing market Data-driven valuation Location-based analysis Regression models Temporal analysis Explainable AI (XAI) SH
报告人
Dinesh M
Undergraduate Studen Panimalar engineering college

稿件作者
Dravide Suyambu Raj J Panimalar Engineering College
EVANESH R PANIMALAR ENGINEERING COLLEGE
Dinesh M Panimalar engineering college
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 11月30日 2025

    初稿截稿日期

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询