Color-Aware Natural Scene Statistics for Enhanced No-Reference Assessment of Contrast-Distorted Images
编号:44 访问权限:仅限参会人 更新:2025-11-19 09:21:52 浏览:10次 口头报告

报告开始:暂无开始时间(Asia/Amman)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
No-reference image quality assessment (NR-IQA)
is crucial for evaluating perceptual quality without reference
images. Existing NR-IQA models for contrast-distorted
images primarily rely on luminance-based Natural Scene
Statistics (NSS), often neglecting chromatic information.
This study introduces two perceptually motivated color
features—colorfulness (CIELab) and color naturalness
(CIELuv)—into the NR-IQA framework. Experiments on
three benchmark databases (TID2013, CID2013, and CSIQ)
demonstrate that incorporating these color features consistently
improves predictive accuracy, with up to 30% higher PLCC
and notable reductions in RMSE. These findings confirm that
color cues complement luminance-based features and enhance
the reliability of contrast-distortion assessment.
关键词
NR-IQA, NSS, Contrast distortions, image colorfulness, naturalness, perception quality metrics
报告人
Yusra Al Najjar
Assistant Professor Zarqa University

稿件作者
Yusra Al Najjar Zarqa University
Amer Rawash Zarqa University
Abdulla Al Ali Zarqa university
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 11月30日 2025

    初稿截稿日期

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询