Quantitative Analysis of Selected Stocks Based on Time Series Approach
编号:24 访问权限:仅限参会人 更新:2025-12-29 02:32:56 浏览:233次 张贴报告

报告开始:2025年12月29日 08:20(Asia/Amman)

报告时间:5min

所在会场:[PS] Poster Session [PS] Poster Session

演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
This study develops a concise quantitative framework for forecasting Vietnamese stock prices by integrating econometric models with technical and fundamental indicators. Using data from 392 HOSE-listed stocks during 2020–2025 (over 45 million data points), the analysis incorporates Multiple Regression, GARCH(1,1), and VAR, along with MA, MACD, RSI, and valuation ratios. Results show that the banking sector leads overall market movements by 2–3 days, while foreign net buying Granger-causes VN-Index returns and explains 22.4% of their variance. The GARCH(1,1) model confirms persistent volatility clustering (α+β=0.95). Back-testing indicates 74.6% and 81.2% directional accuracy for RSI and MACD, with forecast errors (RMSE/MAE) improving by 12–18% over baseline models. These findings demonstrate that combining econometric and indicator-based analysis enhances short-term prediction and supports data-driven investment decisions in emerging markets.
关键词
Time Series, Stock Market, GARCH, VAR, Regression, Quantitative Finance.
报告人
Thuy Le Nguyen Thanh
Student Master Vietnam;University of Information Technology; VNU-HCM

稿件作者
Thuy Le Nguyen Thanh Vietnam;University of Information Technology; VNU-HCM
Duy Tran Phuong University of Information Technology, VNU-HCM, Vietnam
Anh Nguyen Gia Tuan University of Information Technology, VNU-HCM, Vietnam
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询