Adaptive Energy-Conscious Federated Attention Modeling for Intrusion Detection in Wireless Sensor Networks
编号:225 访问权限:仅限参会人 更新:2026-01-05 21:06:09 浏览:154次 拓展类型2

报告开始:暂无开始时间(Asia/Amman)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Wireless Sensor Networks (WSNs) are essential to next-generation wireless systems, their scattered deployment and limited resources make them extremely susceptible to cyberattacks. While current deep learning-based intrusion detection systems (IDS), such CNN, LSTM, and GRU models, achieve excellent accuracy, they have drawbacks, including high processing costs, centralized training, and privacy concerns. This research suggests a Federated Attention-Based Lightweight Intrusion Detection System (FA-IDS) for WSNs in order to overcome these constraints. In order to enable decentralized training among sensor nodes while maintaining data privacy and lowering communication cost, the suggested approach combines federated learning (FL) with a Lightweight Attention Enhanced BiGRU (Att-BiGRU) classifier. To balance node energy consumption and detection accuracy, an energy-aware loss function is implemented. When compared to centralized CNN, LSTM, and GRU techniques, experimental evaluation on the WSN-DS dataset shows that FA-IDS achieves 99.1% detection accuracy, reduces energy consumption by 18–25%, and dramatically lowers communication cost. The outcomes verify that the suggested method is suitable for scalable and safe WSN deployments .
 
关键词
Wireless Sensor Networks, Intrusion Detection System, Federated Learning, Attention Mechanism, Energy Efficiency.
报告人
Kanakamedala Nitya
Research Scholar GIET University

稿件作者
Kanakamedala Nitya GIET University
MM Prasad Reddy GIET Uninversity
B Nancharaiah Usha Rama college of engineering & Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询