Lightweight EMG Gesture Recognition Using Mixed-Precision Convolutional Neural Networks
编号:216 访问权限:仅限参会人 更新:2025-12-26 09:50:57 浏览:75次 拓展类型2

报告开始:2025年12月30日 17:00(Asia/Amman)

报告时间:15min

所在会场:[S7] Track 7: Pattern Recognition, Computer Vision and Image Processing [S7-2] Track 7: Pattern Recognition, Computer Vision and Image Processing

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Abstract—Convolutional neural networks (CNNs) are widely used in EMG-based motion recognition but typically incur high computational and memory costs, limiting deployment on edge or wearable platforms. To address this challenge, this paper proposes a lightweight CNN model based on mixed-precision quantization. By assigning different bit-widths (2/4/8 bits) to each network layer according to its sensitivity to precision, the proposed method significantly reduces both model size and inference complexity while maintaining classification performance. Specifically, we design a CNN model targeting five-class EMG gesture recognition based on the Ninapro DB1 dataset. The original model achieves an accuracy of 92.68% under FP32 precision, with a model size of 252.4 KB. By applying a layer-wise mixed-precision quantization strategy combining post-training quantization (PTQ) and quantization-aware training (QAT), the model is compressed to 36.58 KB (6.9× compression) with only a 3.1% accuracy drop. Hardware deployment on a RISC-V-based Milk-V Duo platform confirms the proposed approach’s suitability for embedded applications, achieving a 5.94× speedup over FP32 inference and a 1.65× improvement over INT8. These findings demonstrate the method’s potential for efficient, real-time EMG recognition in edge computing environments.

 
关键词
EMG signal detection,convolutional neural network,mixed-precision quantization,gesture recognition,hardware-friendly
报告人
Siyuan Shen
Student Southeast University

稿件作者
Siyuan Shen Southeast University
Hao Liu Southeast University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

  • 12月31日 2025

    初稿截稿日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询