Real-Time GPU Acceleration of 3D Delaunay Triangulations using Parallel Insertion Strategies
编号:212 访问权限:仅限参会人 更新:2025-12-24 14:18:48 浏览:46次 拓展类型2

报告开始:2025年12月30日 16:30(Asia/Amman)

报告时间:15min

所在会场:[S9] Track 5: Emerging Trends of AI/ML [S9-2] Track 5: Emerging Trends of AI/ML

暂无文件

摘要
GPU-based framework for 3D Delaunay triangulation using the gFlip3D parallel insertion algorithm has been presented here. Traditional CPU implementations of Delaunay triangulation are computationally intensive and do not scale well for large point clouds. Making use of the massive parallelism of modern GPUs, gFlip3D gets up to 24× speedup over CPU baselines and keeps throughputs from 4 to 5 million points per second on datasets larger than 100 million points. The approach offers finalization of space for memory efficiency and also has the capability to output partial streams, allowing real-time rendering of triangulated geometry. The empirical evidence demonstrates a quasi-linear scalability concerning the execution time in conjunction with good frame rates (≥1 fps) for datasets up to 1 million points. Performance validated over years of strong experimentation over synthetic and real-world data. Results established gFlip3D as an extremely scalable, high-performance solution for graphics-intensive applications such as interactive visualization, AR/VR systems, and scientific modeling.
关键词
GPU, Delaunay Triangulations, Insertion Strategies, Scalability Test, Memory Footprint
报告人
Arti Badhoutiya
GLA University, Math GLA University; Mathura

稿件作者
Arti Badhoutiya GLA University; Mathura
Ashish Sharma GLA University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

  • 12月31日 2025

    初稿截稿日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询