IoT-Based Alert System for Faulty Urban Elevators
编号:21 访问权限:仅限参会人 更新:2025-11-19 09:15:11 浏览:2次 拓展类型2

报告开始:暂无开始时间(Asia/Amman)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
With the rapid urbanization of cities, elevators have become essential for ensuring smooth vertical mobility in high-rise buildings. However, frequent mechanical or electrical faults can lead to accidents, delays, and safety concerns. This research introduces an IoT-based intelligent alert framework designed to monitor, predict, and report potential elevator malfunctions in real time. The system employs a four-layer architecture comprising sensor, edge, cloud, and application tiers. Non-invasive sensors capture vibration, sound, temperature, and motor-current data from the elevator units. Using a Principal Component Analysis (PCA)–Long Short-Term Memory (LSTM) model, the framework reduces high-dimensional data and predicts anomalies before failure occurs. Edge devices handle quick, low-latency inference, while cloud servers perform deeper analysis, visualize performance trends, and trigger alerts for maintenance teams. The proposed solution enhances reliability, minimizes downtime, and supports safer urban mobility. Future improvements may include vision-based diagnostics and federated learning for model updates across multiple buildings.
关键词
IoT, Edge Computing, LSTM, Predictive Maintenance, Smart Elevators, Urban Safety
报告人
Anupam Sharma
Student Chandigarh University

稿件作者
Pawani Bharadwaj Chandigarh University
Parnika Tripathi Chandigarh University
Anupam Sharma Chandigarh University
Khushi Singh Chandigarh University
Keshav Kumar Chandigarh University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 11月30日 2025

    初稿截稿日期

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询