An Innovative ML-Based Method for Enhanced Echocardiogram Image Classification
编号:207 访问权限:仅限参会人 更新:2025-12-24 14:18:17 浏览:30次 拓展类型2

报告开始:2025年12月30日 15:45(Asia/Amman)

报告时间:15min

所在会场:[S9] Track 5: Emerging Trends of AI/ML [S9-2] Track 5: Emerging Trends of AI/ML

暂无文件

摘要
An echocardiogram is a very vital process that provides imaging information on heart diseases diagnosis and follow up. Among the leading causes of death all over the world are heart diseases, and therefore quality images are necessary in the correct medical analysis, though noise and distortion tend to compromise the quality of images used in diagnoses. In this paper, an ML based innovative method has been discovered on the combination of Mask R-CNN with the Radial Basis Function Support Vector Machine (RBF-SSVM) and demonstrates better quality improvement and correct classification of quality echocardiogram images and improves the image recovery quality of noise removal through high-cardiogramimage-classifying accuracies and will be very helpful in application to the research topic of clinical application. The outcome of the experiments is such that 97.8 percent accurate in the classification of the experimental results has been attained, which represents the effectiveness of this approach to addressing the issues of echocardiogram imaging. The article is a breakthrough in the use of ML to enhance cardiac diagnostics
关键词
Echocardiogram Imaging, Cardiac Diagnostics, Machine Learning, Mask R-CNN, RBF-SSVM, Speckle Noise Suppression
报告人
Saloni Bansal
An Innovative ML-Bas GLA University

稿件作者
Saloni Bansal GLA University
Kanchan Yadav GLA University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

  • 12月31日 2025

    初稿截稿日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询