Adaptive Maximum Power Point Tracking Using Machine Learning for Photovoltaic Systems
编号:203 访问权限:仅限参会人 更新:2025-12-24 14:17:53 浏览:2次 拓展类型2

报告开始:暂无开始时间(Asia/Amman)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Machine Learning (ML) technology for solar photovoltaic (PV) systems has emerged as a good option for increasing energy conversion efficiency under varying environmental conditions. This paper presents an adaptive Maximum Power Point Tracking (MPPT) approach using ML techniques to optimize real-time energy harvesting in PV systems. Traditional MPPT techniques such as Perturb and Observe (P&O) and Incremental Conductance are less efficient under rapidly varying irradiance and temperature. But the proposed ML-based MPPT scheme learns dynamically from environment and system data and forecast and optimize the operating point with a better accuracy. Various supervised learning models are compared on simulated data to identify the most accurate model with respect to accuracy, convergence speed, and computational cost. Experimental validation by MATLAB/Simulink confirms the better performance of the adaptive ML-based MPPT approach compared to conventional approaches. This paper illustrates the potential of intelligent control in improving the robustness and efficiency of PV systems in real-world applications
关键词
Machine Learning, Maximum Power Point Tracking, adaptive control, Photovoltaic (PV) Systems, Real-Time Optimization, Renewable Energy, solar energy, environmental variability, Energy Efficiency, Smart Grid Integration
报告人
Rakesh Kumar
GLA University GLA University

稿件作者
Rakesh Kumar GLA University
Kanchan Yadav GLA University Mathura
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

  • 12月31日 2025

    初稿截稿日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询