Smart Power Distribution for PHEVs: A Data-Driven Fuzzy Logic Framework for Real-World Driving Scenarios
编号:197 访问权限:仅限参会人 更新:2025-12-24 14:16:36 浏览:2次 拓展类型2

报告开始:暂无开始时间(Asia/Amman)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Plug-in Hybrid Electric Vehicles (PHEVs) play a vital role in advancing sustainable transport, offering flexibility by switching between electric and internal combustion modes. However, managing energy flow and power distribution in real-world driving remains complex. This paper presents a data-driven control framework that integrates machine learning (ML) and fuzzy logic to optimize PHEV power management. The ML model predicts battery state of charge (SOC) using real-time driving data, while fuzzy logic determines the optimal distribution of power across four modes: full electric, series hybrid, parallel hybrid, and full internal combustion. The framework dynamically adapts to diverse driving conditions, consistently minimizing fuel use and emissions through electric propulsion. Simulation using the Worldwide Harmonized Light Vehicles Test Cycle demonstrates improved fuel economy, reduced emissions, and an 84 km all-electric range with 80% battery utilization. The approach also enhances gasoline-equivalent fuel efficiency by 20%. These results underscore the framework’s potential for future PHEV applications
关键词
Plug-in Hybrid Electric Vehicles (PHEVs), Fuzzy Logic Control, Machine Learning (ML), Energy Management System (EMS), Real-World Driving Cycles, Fuel Efficiency, Emission Reduction, Battery State of Charge (SOC) Prediction
报告人
Kanchan Yadav
GLA University GLA University Mathura

稿件作者
Kanchan Yadav GLA University Mathura
Rakesh Kumar GLA University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

  • 12月31日 2025

    初稿截稿日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询