Energy-Efficient AI Algorithms for Machine Learning in IoT Applications
编号:192 访问权限:仅限参会人 更新:2025-12-23 13:40:18 浏览:26次 拓展类型2

报告开始:2025年12月29日 16:45(Asia/Amman)

报告时间:15min

所在会场:[S2] Track 2: IoT and applications [S2-1] Track 2: IoT and applications

暂无文件

摘要
The swift growth of the Internet of Things (IoT) has resulted in unparalleled amounts of distributed data production, requiring the implementation of machine learning (ML) models at the network's edge. Nonetheless, the resource-limited characteristics of IoT devices—restricted battery life, processing capability, and memory—present considerable obstacles for running computationally demanding AI algorithms. This research explores energy-saving AI methods aimed at enhancing ML efficiency while reducing energy usage in diverse IoT settings. We assess lightweight model designs, techniques for model compression (quantization, pruning, and knowledge distillation), and adaptive learning methods that modify computation dynamically according to context and resource availability. Moreover, we introduce a cohesive framework that utilizes edge–cloud cooperation to optimize workload allocation, minimize communication costs, and prolong device functionality. Experimental findings reveal that the suggested energy-efficient ML techniques attain reductions of 40–65% in energy consumption while maintaining accuracy levels similar to conventional ML models. The results emphasize the capacity of smart optimization methods to facilitate scalable, sustainable, and high-performance IoT implementations, setting the stage for future environmentally friendly AI-powered systems
 
关键词
Energy-efficient machine learning, Edge AI, Internet of Things (IoT), Lightweight AI algorithms, and Adaptive learning.
报告人
Minu Balakrishnan
Assistant Professor Sri Eshwar College Of Engineering

稿件作者
Gokulakrishnan S Dayananda Sagar University
Anusha Ampavathi Vidya Jyothi Institute of Technology
Kanegonda Ravi Chythanya SR University
Minu Balakrishnan Sri Eshwar College Of Engineering
Veeraswamy Ammisetty Koneru Lakshmaiah Education Foundation
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

  • 12月31日 2025

    初稿截稿日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询