Leveraging Gemini 1.5 Pro and Prompt Engineering for Robust Handwriting Interpretation
编号:191 访问权限:仅限参会人 更新:2025-12-23 13:40:13 浏览:25次 拓展类型2

报告开始:2025年12月30日 16:00(Asia/Amman)

报告时间:15min

所在会场:[S7] Track 7: Pattern Recognition, Computer Vision and Image Processing [S7-2] Track 7: Pattern Recognition, Computer Vision and Image Processing

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Malayalam handwritten script recognition is a challenging task due to the language's complex script and diverse writing styles. Recent advancements in deep learning and prompt engineering offer promising solutions to improve recognition accuracy. This study explores the application of prompt engineering techniques to enhance the performance of Malayalam handwritten script recognition models. By designing effective prompts, we aim to leverage the capabilities of pre-trained language models and improve their ability to recognize handwritten Malayalam text. Our approach involves crafting prompts that capture the nuances of the Malayalam script and utilizing them to fine-tune pre-trained models. We evaluate the performance of our approach on a dataset of Malayalam handwritten text and demonstrate significant improvements in recognition accuracy. Our findings highlight the potential of prompt engineering in improving the performance of handwritten script recognition models for languages like Malayalam.
 
关键词
Prompt Engineering, Malayalam Handwritten Script Recognition, Deep Learning, Pre-trained Language Models.
报告人
Gargy G
research scholar NICHE

稿件作者
Gargy G NICHE
A. Shajin Nargunam Noorul Islam Centre for Higher Education
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

  • 12月31日 2025

    初稿截稿日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询