Optimizing Machine Learning for IoT: Energy-Efficient AI Approaches and Architectures
编号:189 访问权限:仅限参会人 更新:2025-12-23 13:40:02 浏览:30次 拓展类型2

报告开始:2025年12月29日 17:30(Asia/Amman)

报告时间:15min

所在会场:[S4] Track 4: Dedicated Technologies for Wireless Networks Track 6: Signal Processing for Wireless Communications Track 8: Communication and Networking Technologies for Smart Agriculture [S4] Track 4: Dedicated Technologies for Wireless NetworksTrack 6: Signal Processing for Wireless CommunicationsTrack 8: Communication and Networking Technologies for Smart Agriculture

暂无文件

摘要
The swift expansion of Internet of Things (IoT) devices has heightened the demand for machine learning (ML) models that function within tight limitations on energy, memory, and computation. This document offers an in-depth analysis of energy-saving AI methods and design enhancements specifically designed for resource-limited IoT settings. We explore lightweight machine learning and deep learning methods—such as model compression, pruning, quantization, knowledge distillation, and event-driven processing—and assess their effects on energy usage and inference efficiency across diverse IoT platforms. A refined edge–cloud cooperative framework is suggested to lower communication costs, adaptively distribute computation, and prolong device lifespan while delivering real-time insights. Experimental analysis shows that the suggested energy-efficient ML pipeline results in considerable decreases in power consumption, latency, and model size while maintaining prediction accuracy. The results emphasize the essential importance of adaptive, hardware-aware AI techniques in facilitating scalable, sustainable, and efficient IoT implementations, while providing directions for future developments in on-device learning, federated optimization, and neuromorphic computing
 
关键词
Energy-efficient AI,Internet of Things,Edge computing,Lightweight machine learning,Model compression,Low-power architectures.
报告人
Anandakumar Haldorai
dr Sri Eshwar College of Engineering

稿件作者
Anandakumar Haldorai Sri Eshwar College of Engineering
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

  • 12月31日 2025

    初稿截稿日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询