Enhancing Predictive Maintenance in Industrial IoT: Comparative Analysis of Machine Learning Models for Fault Detection and Performance Optimization
编号:187 访问权限:仅限参会人 更新:2025-12-23 13:39:47 浏览:16次 拓展类型2

报告开始:2025年12月30日 14:30(Asia/Amman)

报告时间:15min

所在会场:[S2] Track 2: IoT and applications [S2-2] Track 2: IoT and applications

暂无文件

摘要
The most recent advancements in the Industrial Internet of Things (IIoT) technologies, which enable industrial equipment data monitoring and collection in real-time, have allowed for the implementation of predictive maintenance techniques that enhance operational efficiency and reduce unscheduled downtimes. This research analyzes multiple models of machine learning (ML) including Random Forests, Support Vector Machine (SVM), XGBoost, and Long Short-Term Memory (LSTM) networks with the goal of optimizing fault detection and performance evaluation in the industry. Sensor data from critical machinery was processed to assess model precision, recall, F1-score, and overall degradation forecasting to measure detection accuracy. Findings demonstrate that while XGBoost performs reliably for fault classification, early anomaly detection is best facilitated by LSTM networks due to their ability to capture relevant underlying temporal structures associated with such detection. The results showcased the importance of tailored machine learning model selection towards specific industrial use cases and the role of intelligent analytics aimed at enhancing predictive maintenance integration within IIoT frameworks.
 
关键词
Predictive Maintenance, Industrial Internet of Things (IIoT), Machine Learning Models, Fault Detection, Performance Optimization, Anomaly Detection
报告人
Dr. Biswaranjan Swain
Professor Associate Professor; India; Centre for Internet of Things; Siksha 'O' Anusandhan (Deemed to be University); Bhubaneswar; Odisha

稿件作者
Dr. Biswaranjan Swain Associate Professor; India; Centre for Internet of Things; Siksha 'O' Anusandhan (Deemed to be University); Bhubaneswar; Odisha
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

  • 12月31日 2025

    初稿截稿日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询