A HYBRID METHOD FOR SOLAR ENERGY FORECASTING USING WEATHER DATA AND MACHINE LEARNING
编号:184 访问权限:仅限参会人 更新:2025-12-23 13:39:28 浏览:15次 拓展类型2

报告开始:2025年12月30日 10:30(Asia/Amman)

报告时间:15min

所在会场:[S8] Special Track 2 : Underwater Technologies Special Track 3: Green Energy Breakthroughs and Sustainable Energy Technologies [S8-2] Special Track 3: Green Energy Breakthroughs and Sustainable Energy Technologies

暂无文件

摘要
For enhancing the management of energy resources as well as for dependable integration of renewable energy systems to power grids, precise forecasting of solar energy generation is essential. Standard forecasting methods usually do not cope well with the nonlinear functions, fluctuations in the system due to weather changes, and dynamics of solar irradiance. The development of this paper is based on a hybrid forecasting strategy, which aims to improve prediction accuracy by incorporating meteorological information with machine learning techniques. The proposed methodology utilizes weather parameters such as temperature, humidity, cloud cover, and solar irradiance along with Random Forest and Long Short-Term Memory (LSTM) networks. Evaluation on real-world datasets shows that the proposed hybrid model outperformed standalone ones and baseline methods on multiple forecasting performance measures. MAE, RMSE, and R² score measurement proved that the hybrid approach not only decreases the error values but also enhances performance for both short-term and long-term forecasting. The results of this study reveal that using weather data fused with machine learning can efficiently and reliably address the problem of forecasting solar energy.
 
关键词
LSTM, Machine learning, Weather, Hybrid data, Solar, Green energy
报告人
Dhananjay V Khankal
Professor India;Professor; Savitribai Phule Pune University; Pune

稿件作者
Dhananjay V Khankal India;Professor; Savitribai Phule Pune University; Pune
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

  • 12月31日 2025

    初稿截稿日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询