FPGA Implementation of AI-Based Road Sign Detection for Autonomous Systems
编号:167 访问权限:仅限参会人 更新:2025-12-23 13:29:43 浏览:4次 拓展类型2

报告开始:暂无开始时间(Asia/Amman)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
This research investigates the deployment of a quantized convolutional neural network for traffic sign recognition on an embedded FPGA platform. A convolutional neural network was trained on a dataset conforming to the Vienna Convention on Road Signs and Signals to demonstrate the benefits of international standardization in improving classification performance. The trained model was quantized using Brevitas to reduce precision, exported through QONNX, and compiled with the FINN framework for deployment on a PYNQZ2 board. A live webcam was integrated to simulate real-time image acquisition for inference. The deployed system achieved an accuracy of 94.45%, demonstrating the feasibility of low bit-width neural networks for real-time, low-latency inference on resourceconstrained hardware. This work highlights the critical role of quantization-aware training, model streamlining, and hardwaresoftware co-design in enabling efficient edge AI deployment.SDG alignment—This research advances SDG 3 (Good Health and Well-Being), target 3.6 and SDG 11 (Sustainable Cities and Communities),
target 11.2 by enabling robust driver-fatigue detection to improve road safety and reduce traffic injuries within safer, more sustainable transport systems.
关键词
FPGA, Convolutional Neural Network, Quantization, Traffic Sign Recognition, Edge AI, PYNQ, FINN
报告人
Ahmed Solyman
Lecturer Glasgow Caledonian University

稿件作者
Ahmed Solyman Glasgow Caledonian University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 12月30日 2025

    注册截止日期

  • 12月31日 2025

    初稿截稿日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询