Leakage-proof multi-view EEG pipeline for ADHD classification with aperiodic-aware Riemannian robust late-fusion evaluation
编号:165 访问权限:仅限参会人 更新:2025-12-23 13:29:19 浏览:125次 拓展类型2

报告开始:2025年12月29日 16:15(Asia/Amman)

报告时间:15min

所在会场:[S4] Track 4: Dedicated Technologies for Wireless Networks Track 6: Signal Processing for Wireless Communications Track 8: Communication and Networking Technologies for Smart Agriculture [S4] Track 4: Dedicated Technologies for Wireless NetworksTrack 6: Signal Processing for Wireless CommunicationsTrack 8: Communication and Networking Technologies for Smart Agriculture

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
We present a leakage-proof, multi-view EEG framework for ADHD classification that fuses four complementary signals: 1) aperiodic-aware spectra that separate oscillatory peaks from the 1/f background and yield a corrected θ/β* index; 2) spatial structure via Riemannian geometry on covariance (SPD→Tangent); 3) sub-second microstate dynamics (coverage, dwell, transitions, entropy); and 4) lightweight self-supervised embeddings from a compact TCN/Transformer trained strictly within the training fold. A regularized late-fusion stage aggregates calibrated probabilities (isotonic/Platt), and the full pipeline is trained/frozen under nested Group/LOSO cross-validation with a locked external holdout to prevent subject-level leakage. On pediatric EEG (N=121), the method attains balanced accuracy ≈93.5% (±3.0) with ROC–AUC ≈0.97 and PR–AUC ≈0.96; on a cross-dataset holdout, performance remains high (BA ≈91%, Δ≈−2–3 pp), indicating true out-of-subject generalization. Robustness checks show minimal sensitivity to referencing (CAR vs. linked mastoids, Δ≤0.3 pp) and modest gains with longer recordings (≥4 min → +~0.7 pp BA); Riemannian shrinkage λ≈10⁻³ is near-optimal. Label-permutation and subject-shuffle collapse to chance (BA≈50%, AUC≈0.50), supporting validity. Overall, the framework’s oscillation-aware, geometry-respecting, dynamics-sensitive, and SSL-enhanced design delivers accurate, calibrated predictions suitable for high-specificity clinical triage and prospective deployment. By advancing reliable, data-driven neurodiagnostic tools, our approach can improve early ADHD screening and equitable access to high-quality mental health assessment.
关键词
EEG, ADHD, Leakage-proof, Riemannian geometry, Self-supervised learning.
报告人
Mohamadreza Khosravi
Researcher Shiraz University of Medical Sciences

稿件作者
Khosro Rezaee Meybod University
Mohamadreza Khosravi Shiraz University of Medical Sciences
Ali Rachini Holy Spirit University of Kaslik
Zakaria Che Muda Surveying INTI-IU University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询