Distance-Learning EEG Understanding via Imbalance-Aware Stacked Trees and Subject-Wise Generalization Analysis Across Students
编号:163 访问权限:仅限参会人 更新:2025-12-23 13:28:59 浏览:127次 拓展类型2

报告开始:2025年12月29日 14:45(Asia/Amman)

报告时间:15min

所在会场:[S4] Track 4: Dedicated Technologies for Wireless Networks Track 6: Signal Processing for Wireless Communications Track 8: Communication and Networking Technologies for Smart Agriculture [S4] Track 4: Dedicated Technologies for Wireless NetworksTrack 6: Signal Processing for Wireless CommunicationsTrack 8: Communication and Networking Technologies for Smart Agriculture

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Distance-learning platforms increasingly seek objective EEG-based markers of lecture comprehension, yet robust, imbalance-aware models on real datasets remain scarce. Using the Kaggle “EEG data / Distance learning environment” corpus (8 students, 14 Emotiv Epoc X channels, 84 tabular features/segment, ≈21% “not understood”), we propose IASTE, an Imbalance-Aware Stacked Tree Ensemble combining gradient boosting, RUSBoost, and bagged trees via leakage-free out-of-fold stacking and a logistic meta-learner. Under a stratified 70/15/15 train–validation–test split, with hyperparameters selected solely by minority-class F1 on validation, IASTE attains 97.3% test accuracy, macro-F1 = 0.959, and F1₀ (“not understood”) = 0.936. This improves macro-F1 by ≈1–2 percentage points and F1₀ by up to ≈1.5 points over strong baselines including Random Forest, RUSBoost, SVM, LSTM, BiLSTM, and BiLSTM+attention. Subject-wise analysis shows per-student accuracies in the range 0.968–0.980, versus ≈0.956–0.964 for tree and deep baselines, indicating genuine cross-subject generalization. Ablations confirm that removing stacking, imbalance handling, or F1₀-based selection systematically degrades minority-class F1 and macro-F1, while performance remains stable across the explored tree-depth and NumLearningCycles grid. By enabling objective, data-driven monitoring of lecture comprehension in distance-learning environments, our approach supports more inclusive and effective digital education.
关键词
EEG, Distance learning, Lecture understanding, Class imbalance, Stacked ensembles, Subject-wise generalization.
报告人
Mohamadreza Khosravi
Researcher Shiraz University of Medical Sciences

稿件作者
Khosro Rezaee Meybod University
Mohamadreza Khosravi Shiraz University of Medical Sciences
Ali Rachini Holy Spirit University of Kaslik
Zakaria Che Muda Surveying INTI-IU University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询