Intelligent Android Malware Detection in Real-World Environments Using Machine and Deep Learning Model
编号:149 访问权限:仅限参会人 更新:2025-12-23 13:19:08 浏览:110次 拓展类型1

报告开始:2025年12月29日 14:15(Asia/Amman)

报告时间:15min

所在会场:[S3] Track 3: Privacy, Security for Networks [S3] Track 3: Privacy, Security for Networks

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
This paper proposes a novel algorithm to detect the Android malware. The algorithm implements several models of machine and deep learning. The proposed method uses TUANDROMD to develop and assess these models; six models were implemented; namely, Gradient Boosting, Random Forest, Support Vector Machine, XGBoost, Multi-Layer Perceptron, and a custom deep learning model developed in PyTorch. The Random Forest classifier has the highest performance, with an AUC of 1.00 indicating that the algorithm is able to accurately classify samples with almost no errors, while the other models demonstrated strong predictive capabilities. In addition, the ROC curve indicates excellent performance in distinguishing between malicious and safe applications. These results give a good indication that machine learning and deep learning are robust in Android malware detection. This work contributes to the development of reliable, data-driven security solutions capable of addressing the evolving challenges in mobile threat detection.
 
关键词
Android malware, machine learning, malware detection, Mobile security, deep learning, TUANDROMD dataset, cybersecurity
报告人
Adnan Al-Smadi
Professor Zarqa University

稿件作者
Adnan Al-Smadi Zarqa University
Haya Al-Hadramy Al al-Bayt University
Ghadeer Sulieman Al al-Bayt University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询