A Hybrid Technique for Breast Cancer Detection with Efficient Imbalance Removal and Classification using ShuffleNetV2 Architecture
编号:132 访问权限:仅限参会人 更新:2025-12-23 13:12:32 浏览:103次 拓展类型2

报告开始:2025年12月30日 16:00(Asia/Amman)

报告时间:15min

所在会场:[S2] Track 2: IoT and applications [S2-2] Track 2: IoT and applications

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
For researchers to improve treatment efficacy and reduce mortality rates, early identification of breast cancer is crucial assisted by digitally enabled tools. In recent times, deep CNN-based deep transfer learning (TL) methods have emerged as the most facilitating technology. In this paper, we propose a computer aided methodology named deep hybrid AS-RF-ShuffNetV2 which addresses three major challenges of the base technology: data imbalance, extraction of feature set, and classification. Three steps make up the entire work: (1) Adaptive synthetic minority oversampling (ADASYN) is used to oversample malignant images (minority) in order to improve the feature space; (2) Random Forest (RF) splits are used to extract selective features from the balanced dataset; and (3) ShuffleNetV2, an efficient deep TL model, uses a channel split block and a decisive channel attention block to classify the final features into two target classes. The accuracy and AUC score achieved by our model are 92.68% and 0.86, using INBreast dataset. The strength and consistency of the suggested method in correctly identifying breast cancer classes are demonstrated by thorough testing versus existing contemporary approaches.
 
关键词
Breast Cancer, INBreast Dataset, Imbalance, Hybrid CNN network, ShuffleNetV2.
报告人
Debaleena Datta
Assistant Professor Dept. of Computer Science & Applications Techno Main Saltlake

稿件作者
Debaleena Datta Dept. of Computer Science & Applications Techno Main Saltlake
Uddalok Sen Dept. of Information Technology MCKV Institute of Enginnering Howrah, India
Hani Attar Zarqa University Jordon
Zakaria Che Muda Faculty of Engineering and Quantity Surveying INTI-IU University Nilai, Malaysia
Abey Jose School of Allied Health University of Limerick, Ireland
Muhammad Fazal Ijaz Torrens University Australia
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询