Review of Remote Sensing and Artificial Neural Networks in Wind Force Prediction for Renewable Energy Production
编号:126 访问权限:仅限参会人 更新:2025-12-27 17:20:53 浏览:115次 拓展类型2

报告开始:2025年12月30日 12:10(Asia/Amman)

报告时间:10min

所在会场:[S8] Special Track 2 : Underwater Technologies Special Track 3: Green Energy Breakthroughs and Sustainable Energy Technologies [S8-1] Special Track 2 : Underwater TechnologiesSpecial Track 3: Green Energy Breakthroughs and Sustainable Energy Technologies

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The production of energy from renewable wind sources is significantly affected by dynamic changes in wind speed and force, environmental parameters, and turbine operating conditions. These factors play a key role in reliability studies and wind energy production forecasting. In this context, the integration of remote sensing (such as high-frequency radars and satellite data) with artificial neural networks (ANN) provides an effective tool for accurate wind force prediction, and numerous studies with various but related objectives have been conducted to estimate real-time reliability and energy production. This article offers a comprehensive review of the literature on the application of remote sensing and ANN in predicting wind behavior for renewable energy production. Special focus is placed on describing the scope of case studies (such as wind forecasting), ranging from simple ANN models to hybrid deep learning approaches, and key variables like wind speed, direction, and climatic data. This study highlights research that utilizes these technologies to predict reliability issues and develop preventive maintenance policies.
关键词
Remote sensing, artificial neural networks, wind force prediction, renewable energy.
报告人
Mohammad Jafar Mokarram
Dr. School of electrical engineering and intelligent manufacturing; Anhui xinhua university

稿件作者
Mohammad Jafar Mokarram School of electrical engineering and intelligent manufacturing; Anhui xinhua university
Marzieh Mokarram Shiraz University
Ayman Amer Faculty of Engineering; Jordan; Zarqa Univeristy
Mohamed Hafez INTI-IU-University;Shinawatra University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询