Integrative Clinical-Longitudinal AI Framework for Early Risk Stratification in Dementia and Related Disorders
编号:125 访问权限:仅限参会人 更新:2025-12-23 13:12:29 浏览:105次 拓展类型2

报告开始:2025年12月30日 14:00(Asia/Amman)

报告时间:15min

所在会场:[S2] Track 2: IoT and applications [S2-2] Track 2: IoT and applications

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Neurodegenerative conditions including dementia are a leading health challenge worldwide, and more often than not, progress implicitly, in a manner that they cannot be detected until very late in the disease. Risk prediction at an early stage thus becomes very essential to allow the provision of individualized care and even to curb cognitive impairment. The study proposes a multi-modal, federated AI and hierarchical attention  framework for  integrating clinical assessment, neuroimaging, genetic/omics biomarkers, digital behavior data and longitudinal electronic health records over 5-10 years across multi- center cohorts. The modalities are encoded by specialized deep learning decoders such as CNNs for imaging and clinical data, Transformers for behavioral data and graph neural networks for genetic/omic inputs. The modality-dependent embeddings get integrated by hierarchical attention operation to introduce trajectory-aware representations that realize temporal patient dynamics. Dynamic risk scores and time-to-event estimates are produced in a model-based optimization framework using recurrent neural networks and survival-transformers. The evaluation demonstrates robust performance with an AUC-ROC of 93.8 percent (95 percent CI) and a C-index of 0.87. The framework increases the predictive performance, interpretability, and privacy, and provides a clinically deployable tool of early dementia risk profiling and intervention planning.
关键词
Dementia Risk Prediction; Multi-Modal Data Integration; federated learning; Survival Analysis; Neuroimaging; Genetic Biomarkers; Explainability
报告人
Anto Lourdu Xavier Raj Arockia Selvarathinam
PhD researcher Department of Data Science and Analytics College of Computing Grand Valley State University Michigan, USA

稿件作者
Anto Lourdu Xavier Raj Arockia Selvarathinam Department of Data Science and Analytics College of Computing Grand Valley State University Michigan, USA
Naveenkumar Anbalagan Department of information Technology, Sona College of Technology, Salem, Tamil Nadu, India
Ayman Amer Faculty of Engineering; Jordan; Zarqa Univeristy
Zakaria Che Muda Malaysia;Faculty of Engineering and Quantity Surveying INTI-IU University Nilai
Yogesh Kumar Department of CSE, School of Technology, Pandit Deendayal Energy University, Gandhinagar, India
Muhammad Umair Manzoor School of Engineering RMIT University, Melbourne, Australia
Muhammad Fazal Ijaz Australia;Torrens University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询