Review of Remote Sensing and Neural Networks in Solar Radiation Prediction for Smart Solar Power Plants
编号:124 访问权限:仅限参会人 更新:2025-12-27 17:22:48 浏览:108次 拓展类型2

报告开始:2025年12月30日 12:00(Asia/Amman)

报告时间:10min

所在会场:[S8] Special Track 2 : Underwater Technologies Special Track 3: Green Energy Breakthroughs and Sustainable Energy Technologies [S8-1] Special Track 2 : Underwater TechnologiesSpecial Track 3: Green Energy Breakthroughs and Sustainable Energy Technologies

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Solar power plant systems face complex nonlinear dynamics, which make accurate prediction challenging with traditional methods due to atmospheric fluctuations, solar radiation variations, and environmental uncertainties. Remote sensing and deep neural networks (such as CNN, RNN, and LSTM) enable the analysis of spatial-temporal data, which provides superior performance in predicting solar radiation for renewable energy production. These methods are crucial in advanced sensor systems for the design, prediction, maintenance, and control of solar power plants, and they offer greater safety, reliability, and efficiency compared to classical approaches. This article aims to review remote sensing and neural network technologies, their advantages (high accuracy, generalizability), and their limitations compared to traditional methods for solar radiation prediction. Unlike other reviews, this study summarizes adaptive intelligent models, proposes simple yet effective methods based on remote sensing and neural network sensor systems, maps the digital transformation to smart solar power plants with integrated technologies, and evaluates the impact of these technologies on the renewable energy value chain.
关键词
Remote Sensing, Neural Networks, Solar Radiation Prediction, Solar Power Plant, Machine Learning, Solar Irradiance, Renewable Energy.
报告人
Mohammad Jafar Mokarram
Dr. School of electrical engineering and intelligent manufacturing; Anhui xinhua university

稿件作者
Mohammad Jafar Mokarram School of electrical engineering and intelligent manufacturing; Anhui xinhua university
Marzieh Mokarram Shiraz University
Hattar Hattar Zarqa University
Mohamed Hafez INTI-IU-University;Shinawatra University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询