Predictive Modeling of Climate Conditions Using Machine Learning Approaches
编号:121 访问权限:仅限参会人 更新:2025-12-23 13:12:27 浏览:105次 拓展类型2

报告开始:2025年12月30日 16:30(Asia/Amman)

报告时间:15min

所在会场:[S2] Track 2: IoT and applications [S2-2] Track 2: IoT and applications

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Accurate climate condition detection plays a crucial role in understanding long-term environmental changes and predicting future climate behavior. By analyzing variations in temperature, precipitation, and atmospheric trends, it becomes possible to identify global warming patterns and their regional impacts. This paper analyzes global and regional climate anomaly trends using traditional time-series and machine learning models, including Linear Regression, Ridge Regression, Random Forest, ARIMA, and Holt-Winters. The dataset, representing temperature anomalies relative to the 1951–1980 baseline, was used to forecast trends up to 2030. Results show a consistent rise in global temperatures across all models, confirming the persistent impact of climate change. The Holt-Winters model achieved the highest accuracy (MAE = 0.1868, RMSE = 0.2083, MAPE = 13.13%), effectively capturing long-term trends, while ARIMA also performed competitively. Random Forest excelled in capturing non-linear regional patterns, particularly for Australia, Brazil, and Germany, where MAPE values ranged from 15–26%. Overall, integrating statistical and machine learning approaches enhances forecasting accuracy and supports data-driven climate resilience planning.
关键词
Climate anomaly detection; Temperature forecasting; Machine learning; Linear Regression; Ridge Regression; Random Forest; ARIMA; Holt–Winters
报告人
Apeksha Koul
Assistant Professor School of CSET, Bennett University, Greater Noida, India

稿件作者
Apeksha Koul School of CSET, Bennett University, Greater Noida, India
Yogesh Kumar India; Gandhinagar;Department of CSE; School of Technology; Pandit Deendayal Energy University
Hani Hattar Zarqa University
Zakaria Che Muda Malaysia;Faculty of Engineering and Quantity Surveying INTI-IU University Nilai
Parvathaneni Naga Srinivasu India;Amrita School of Computing; Amrita Vishwa Vidyapeetham; Amaravati
Muhammad Umair Manzoor Australia;School of Engineering RMIT University; Melbourne
Muhammad Fazal Ijaz Australia;Torrens University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月29日

    2025

    12月31日

    2025

  • 12月30日 2025

    报告提交截止日期

  • 02月10日 2026

    初稿截稿日期

  • 02月10日 2026

    注册截止日期

主办单位
国际科学联合会
承办单位
扎尔卡大学
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询