Large-Scale Vision Foundation Model with Supervised Contrastive Learning-Assisted Fine-Tuning for Wafer Map Mixed Defect Recognition
编号:89 访问权限:仅限参会人 更新:2025-06-26 15:50:38 浏览:80次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The single or mixed defects in wafer maps reflect critical problems in semiconductor manufacturing processes, thus their accurate recognition plays a pivotal role in root cause analysis of anomalies and process stability maintenance. The increasing complexity of mixed-type defects poses new challenges to the feature extraction capability and learning capability of current vision models. To address this challenge, we propose WM-EVA-ViT: a transferred pre-trained large-scale vision foundation model with supervised contrastive learning (SCL)-assisted fine-tuning for wafer map mixed defect recognition (WMMDR). The vision foundation model demonstrates accelerated learning capabilities during the fine-tuning process for defect feature extraction, leveraging its superior general visual feature extraction capacities. Furthermore, a SCL-assisted fine-tuning method is proposed, which enhances class-specific feature discrimination through contrastive learning with class label informed constraints. Experimental results on a real-world dataset validate the effectiveness and superiority of the proposed method. Besides, this method offers novel perspectives for WMMDR in the era of large-scale models.
关键词
wafer map,mixed defect,large-scale vision foundation model,supervised contrastive learning (SCL)
报告人
Shulong Gu
PhD student Xi'an Jiaotong University

稿件作者
Shulong Gu Xi'an Jiaotong University
Zihao Lei Xi'an Jiaotong University
Guangrui Wen Xi'an Jiaotong University
Rui Feng East China Institute of Photo-Electron IC
Di Zhao Xi'an Jiaotong University
Yunpeng Xu Xi'an Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月26日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询