Monitoring Sensor Prediction of Power Transformer based on Domain Specific Large Language Model: An Experimental Case Study
编号:84 访问权限:仅限参会人 更新:2025-06-26 15:44:35 浏览:68次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Monitoring sensor prediction is a critical component of power transformer operation and maintenance. Traditional time-series-based methods for predicting variables such as oil temperature suffer from two major limitations: (a) they require domain-specific expertise, as engineers must understand the algorithm's underlying principles and parameter configurations; (b) they cannot leverage textual knowledge documents. To address the first issue, this study fine-tunes a large language model (LLM) for sensor prediction, leveraging their conversational interface, which allows engineers to obtain prediction results simply by posing queries. This fine-tuning is achieved through Low-Rank Adaptation (LoRA), a method that accelerates training and efficiently updates parameters. To address the second issue, we employ retrieval-augmented generation (RAG) techniques to enable the integration of local knowledge bases. This transforms the LLM into a domain-specific expert capable of reading and utilizing maintenance manuals, technical patents, and operations and maintenance (O&M) logs to provide informed expert operational suggestions. Experiments and visualizations validate the effectiveness of the proposed approach, highlighting the potential of LLMs in the field of power system maintenance.
关键词
Large Language Model (LLM),power transformer,Monitoring Sensor Prediction,oil temperature prediction
报告人
Liu Hao
Dr. China Electric Power Research Institute Co., Ltd.

稿件作者
Liu Hao China Electric Power Research Institute Co., Ltd.
Liang Xiao China Electric Power Research Institute Co., Ltd.
Liu Ying China Electric Power Research Institute Co., Ltd.
Tang Pengfei China Electric Power Research Institute Co., Ltd.
Wang Zhihao China Electric Power Research Institute Co., Ltd.
Wang Shaohe State Grid Zhejiang Electric Power co., LTD. Research Institute
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月26日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询