Deep Reinforcement Learning-Guided Adaptive Feature Extraction with Transformer Classification for Variable Speed Bearing Fault Diagnosis
编号:78 访问权限:仅限参会人 更新:2025-06-26 15:37:47 浏览:125次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The inherent non-stationarity of vibration signals from variable-speed rotating machinery poses significant challenges for traditional bearing fault diagnosis methods. This paper proposes a novel framework that synergistically integrates Deep Deterministic Policy Gradient (DDPG) optimization with an Adaptive Multi-scale Feature Extraction Network (AMFEN), self-attention mechanism and Transformer-based classification to address these challenges. The proposed methodology employs DDPG to adaptively optimize Vold-Kalman filter parameters for robust signal decomposition, eliminating the need for manual parameter tuning. Subsequently, 5 parallel AMFEN strategies extract complementary features from multiple domains, capturing comprehensive fault characteristics. A self-attention mechanism then intelligently selects the most discriminative features, reducing the dimensionality from 320 to 48 while preserving diagnostic information. Finally, a Transformer model performs fault classification, leveraging its superior capability in capturing feature dependencies and temporal patterns. Experimental validation on BGCF dataest demonstrates the framework's superior performance, achieving 97% diagnostic accuracy under variable speed conditions.
 
关键词
Bearing fault diagnosis, variable speed machinery, Vold-Kalman filter, AMFEN, Self-Attention mechanism, Transformer
报告人
Liren Pan
Assistant Lecturer Zhenjiang Technician College Jiangsu Province

稿件作者
Liren Pan Zhenjiang Technician College Jiangsu Province
Leng Xue Zhenjiang Technician College Jiangsu Province
Jialin Li Zhenjiang Technician College Jiangsu Province
Di Zheng Zhenjiang Technician College Jiangsu Province
Weilun Guo Zhenjiang Technician College Jiangsu Province
Yongwei Su Zhenjiang Technician College Jiangsu Province
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月26日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询