Meta-Learning-Based Fault Diagnosis Method for Multi-Rotor Unmanned Aerial Vehicles
编号:68 访问权限:仅限参会人 更新:2025-06-20 16:40:35 浏览:18次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Addressing the critical challenges of scarce fault samples in multi-rotor UAVs operating under complex conditions and diagnostic difficulties from multi-source sensor fusion, this study develops a meta-learning-based framework for few-shot fault diagnosis. Utilizing the RflyMAD dataset from Beihang University's Reliable Flight Control Group, we systematically analyze sensor and actuator fault characteristics. A hierarchical meta-feature extraction network is proposed, integrating temporal feature learning and cross-sensor attention mechanisms. The framework implements three meta-learning approaches: Model-Agnostic Meta-Learning (MAML) for parameter adaptation, Memory-Augmented Neural Networks (MANN) for pattern retrieval, and Prototypical Networks (ProtoNet) for metric-based classification. This methodology provides a novel pathway for handling data-scarce fault diagnosis scenarios, demonstrating the potential to improve diagnostic efficiency while reducing dependency on large-scale fault data.
 
关键词
Fault diagnosis,Multi-rotor UAV,RflyMAD,Meta-learning,Few-shot learning
报告人
Can Guo
Ph.D. student in pro National University of Defense Technology

稿件作者
Can Guo National University of Defense Technology
Jingwei Gao National University of Defense Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询