A Cloud-Edge Collaborative Method for Full-Lifecycle Condition Monitoring of Rotating Machinery
编号:55 访问权限:仅限参会人 更新:2025-06-15 11:01:49 浏览:18次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
To address challenges of high energy consumption in data transmission and significant delays in fault prediction during full-lifecycle monitoring of rotating machinery systems, a novel condition monitoring method is proposed by integrating dynamic sparse optimization with edge collaborative computing. A three-tier architecture—comprising the terminal sensing layer, edge computing layer, and cloud analysis layer—is constructed. At the terminal layer, a condition-adaptive compressed sensing mechanism is designed to dynamically adjust the sampling rate. At the edge layer, a spatiotemporal two-dimensional clustering algorithm is introduced to perform correlation analysis between vibration signals and temperature data. At the cloud layer, an Unscented Kalman Filter (UKF) is employed to enable trend prediction and real-time early warning over the entire lifecycle. Experimental results demonstrate that, compared to traditional methods, the proposed approach reduces data transmission volume by 87.6% while maintaining the same level of monitoring and prediction accuracy.
关键词
wireless sensor networks,edge computing,life-cycle monitoring,cloud-edge collaborating,Unscented Kalman Filter
报告人
Shengchao Shi
Engineer State Grid Qinghai Electric Power Research Institute

稿件作者
Shengchao Shi State Grid Qinghai Electric Power Research Institute
Fuzhi Qi State Grid Qinghai Electric Power Research Institute
Ma Runsheng State Grid Qinghai Electric Power Research Institute
Wenqiang Zhao State Grid Qinghai Electric Power Research Institute
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询