A Physical-Data Hybrid Method of Multi-Fault Diagnosis for eVTOL under closed-loop control
编号:42 访问权限:仅限参会人 更新:2025-06-15 10:30:40 浏览:11次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
With the development of the low-altitude economy and industrial ecosystem, safety issues related to electric vertical takeoff and landing (eVTOL) vehicles have gradually drawn attention. However, closed-loop control poses challenges of fault masking and propagation for eVTOL fault diagnosis. Specifically, when multiple faults occur in different rotors, it’s hard to detect and isolated from easy-to-measure flight states. Therefore, to improve the multi-fault diagnosis accuracy of rotors without speed sensors under closed-loop control, this paper proposes a physical-data hybrid fault diagnosis method that integrates an unknown input observer-based model with a random forest. Firstly, appropriate flight state variables are selected to construct an observer for generating residual signals. Then, the random forest is introduced. By integrating the flight status data and sensor data, a comprehensive diagnostic model is established, and the dynamic association between the flight status and faults is captured, achieving the multi-fault diagnosis of eVTOL under closed-loop control. Simulation experiments on single-fault and multi-fault diagnosis validate the effectiveness of the proposed method.
关键词
Fault Diagnosis,eVTOL,Random Forest,closed-loop control
报告人
Han Wang
Student Beihang University (Beijing University of Aeronautics and Astronautics)

稿件作者
Han Wang Beihang University (Beijing University of Aeronautics and Astronautics)
Xin Wang Beihang University (Beijing University of Aeronautics and Astronautics)
Danyang Han Beihang University (Beijing University of Aeronautics and Astronautics)
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月23日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询